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The 2" Derivative

d e ~
"— () = — (' (x 2 ,,_"_‘_\\
y" = f"() = — (' () e -
= “rate of change of 15t deriv.” 4;
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Terminology L
If ””(x) is positive, r S
then the slope of f(x) is increasing \\ //
and we say f(x) is concave up. | ~ <
| -~
- —

If ’(x) is negative,
then the slope of f(x) is decreasing
and we say f(x) is concave down.
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A point in the domain of the function

at which the concavity changes is o~
called an inflection point. / 7 N -lm.rsw
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Summary:

y = f(x) y'=f"(x)
possible inflection zZero
concave up positive
concave down negative

possible inflection

does not exist

Example: Find all inflection points

and indicate where function is

concave up and concave down for
y =x* —2x3
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Clever Observation
(Second Derivative Test) | U
If x = ais a critical number for f (x)

AND H

1. if f”(a) is positive (CCU), N

then a local min occurs at x = a.

2. if f”(a) is negative (CCD),
then a local max occursat x = a.

DU L

3. iff’(a) =0,
then we say the 2" deriv. test is
inconclusive (need other method)



Example: Find and classify the critical
numbers for

y =2+ 2x% — x*
(use the 2" deriv. test)
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4.4 ’Hopital’s Rule

First, recall as we discussed many,
many, many times at the beginning
of the term:

(Assuming f and g are cont. at x=a)

GO

=77
| x—>ag(x)

o |f g(a) + 0, then done!
f(a)

Ans = (2

e lf gla)=0and f(a) #0,
then examine each side ofx a
(look at the signs)
Ans = co, —oo, or DNE.

e If ga) =0and f(a) =0,
then use algebra to rewrite and
‘cancel’ the denominator. |



L’Hopital’s Rule (0/0 case)
Suppose g(a) = 0and f(a) =0

and f and g are differentiable at x = g,

then
’ f(x) f'(x)
1m = lim
x=ag(x) x-ag (x)
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Aside: Sketch of derlvatlonﬂ—-«—-\ j
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Assume g(a) = ‘Qﬁndf(,a) =00 -

(These explanations are for the case

when g’(a) is not zero).

Explanation 1 (def'n of derivative)

f!(a) _ chl_r)rcllf(xi : {;(a)
g'a . 9&)—g()
x=a X —d
provided these limits exist we have:
f@_  FRE
9@ xmagl)—gl@
| X —a ﬁ
i flx) = f(a) f(x)
= lim = lim

x>ag(x) —g(a)  x-ag(x)

EXpIanation 2 (tangent line approx.): |
The tangent lines for f(x) and g(x) at
X = aare

y=f@x-a)+0 ‘,\/
Yy = gl(a)(x —a)+0"

~ And we know these approximate the

functions f(x) and g(x) better and better
the closer x gets to a, so

Thus,
lim fx) l'im fa)(x—a) _ f'(a)
x—a g(x) x—>a'g’(a) (x—a) g'(a)





